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‘Universal’ curve of ionic conductivities in glasses
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Glass composition can be varied continuously as com-
pared to crystal, and so does an ionic conductivity, σ .
This difference arises from the flexibility glass has by
its disordered structure. At room temperature, σ can
range from 10−1 S/cm to less than 10−15 S/cm with
compositions.

Usually, σ satisfies the relation

σ = σo exp(−Ea/kT ), (1)

where σo is the pre-exponential factor and Ea is the
activation energy for conduction. Many glasses show
linearities in the plots of log σ versus 1/T, to give Ea.
Fig. 1 shows the Arrhenius plots of σ for 17 glasses of
different compositions, ranging from the so-called ‘su-
perionic’ glasses to the low-conducting glasses [1–10].
The magnitudes and the slopes are widely dispersed.

Provided the scattered data by glasses of differ-
ent compositions are unified by a single ‘univer-
sal’ equation or ‘universal’ curve, we can gain fur-
ther insight into the nature of ion dynamics in glass.
Several trials have been done towards this goal.
Swenson and Börjesson [11], for example, proposed the
relation

σ (d)/σ (m) ∼ [(Vd − Vm)/Vm]3 (2)

for superionic (metal halide salt-doped) glasses, where
Vm and Vd are the volumes the network forming units
(e.g., B2O3, P2O5, etc.) span in the salt-undoped and
salt-doped glasses, respectively, and σ (d) and σ (m)
are the corresponding ionic conductivities.

For example, consider the xAgI(1 − x)AgPO3
glasses [12]. By salt doping, the volume which a
single P2O5 unit (or equivalently a single P atom)
spans expands from Vm to Vd. The ratio R (=(Vd −
Vm)/Vm) which characterizes expansion amounts to
120% at x = 0.55. The authors claimed that an in-
crease in σ by salt doping is caused by ‘excess free vol-
ume,’ originating from expansion of the glass network
skeleton.

The present author defined the free volume by [13]

Vf = 1 − �i(2ri)
3, (3)

as the volume, in 1 cm3 of a glass, in which no atoms
exist, where ni is the number within 1 cm3 of a glass
of atomic species i, and ri is its atomic radius. This
is quite a rough approximation, by neglecting ionicity
of the glass constituents and the glass structure.
Moreover, it varies, depending on the values of ri

chosen. Nevertheless, because of simplicity, it can
be a measure of the free volume, at least in the first
approximation.

When Equation 3 is used to the alkali borate and
silicate glasses, Vf decreases almost linearly with an
increase in alkali content. Besides, the concentration
of the network forming atoms (i.e., boron and silicon)
decreases in near parallel [13]. This suggests that alkali
addition causes disruption and accompanying expan-
sion of the network structure, and that added alkali ox-
ide enters into the voids which the network provides and
decrease Vf. That is, the (macroscopically defined) free
volume decreases whilàè increases with an increase in
alkali content.

For the xAgI(1 − x)AgPO3 glasses, on the other
hand, no drastic change in Vf is seen with salt dop-
ing (Fig. 2). Similar indifference of Vf to salt dop-
ing was already reported for the xAgI(1 − x)Ag4P2O7
glasses [13]. These data imply that the doped salt, in
contrast to doped alkali oxide into borate and silicate
glasses, does not disturb the composition and struc-
ture of the mother glass, but enters into glass as an-
other phase having a similar free volume. (This does
not necessarily mean that the doped salt composes the
microdomains [14]. There have been oppositions [15,
16] against the microdomain model.) In other words,
although the AgPO3-rich phase expands and the ratio
R increases by salt doping, the free volume does not ex-
pand. Therefore, Equation 2 should be explained not in
terms of ‘excess free volume,’ but by other (unknown)
mechanism.

More recently, Adams and Swenson [17] presented
the relation

log(σ T ) ∝ F1/3 (4)

which they claimed would be held by any ionic con-
ductors including crystals and molten salts, where F is
the volume fraction of infinite pathway clusters as esti-
mated from the reverse Monte Carlo produced struc-
tural model using the bond-valence sum calculation
technique. Equation 4 can be the ‘universal’ relation
provided it is verified at different temperatures other
than the room temperature used. Also, they should ex-
plain why the ordinate is log(σT), not log σ , and why
the abscissa is F1/3, not F.

As discussed above, extensive studies have recently
been made for obtaining a ‘universal’ equation from
the standpoint of the glass structure, but the goal seems
still out of sight. Formally, however, a ‘universal’ curve
could be drawn quite simply. Fig. 3 shows the plots of
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Figure 1 Arrhenius plots of ionic conductivities for 17 different glasses.
The data were taken from [1–10].

Figure 2 Free volume, Vf, as a function of AgI content, x , in the
xAgI(1 − x)AgPO3 glasses, as estimated using the densities reported
[12].

Figure 3 Arrhenius plots of ionic conductivities for 17 different glasses
of Fig. 1, where the abscissa is given by Ea/kT in place of 1/T . The
dashed line is a ‘universal’ curve, Equation 5.

log σ for 17 different glasses of Fig. 1 as a function of
Ea/kT , not as a function of 1/T. The data fit an ‘univer-
sal’ relation

σ (S/cm) = 50 exp(−Ea/kT) (5)

within one order of magnitude of dispersion.
Ionic conduction in glass is the thermally activated

process of the mobile ions by surmounting a potential
barrier Ea. The pre-exponential factor is usually given
by [18]

σo = ne2λ2ν/αkT , (6)

where n is the number density of the mobile ions,
λ is the average jump distance, ν is the local vi-
brational frequency of the ions, and α is the num-
ber of possible jump directions. It is plausible, there-
fore, that σo varies with glass compositions and σ

deviates a little from Equation 5. Equation 5 im-
plies that σ has an upper limit, 50 S/cm. Truly, the
ionic conductivities of many ion-conducting glasses as
well as their super-cooled liquids seem to converge to
100 S/cm or less with increasing temperatures to in-
finity [19]. For e.g., the Na2O-2B2O3 glass, σo, calcu-
lated from Equation 6 using the nominal density of the
sodium ions of 1.4 × 1022 cm−3, ν of 7.0 × 1012 Hz
[20], and on the assumption of homogeneous distri-
bution of the mobile sodium ions, is 3.5 × 102 S/cm
which is a little larger than the observed, 38.3 S/cm
[9] or 110 S/cm [21]. As far as Equation 6 is cor-
rect, this difference infers that the fraction of overall
sodium ions which can contribute to σ is only 3% or
less.

Statistical-mechanically, the conductivity should be
given in the form like Equation 1, provided ionic con-
duction is the thermally activated process [22]. The
fact that σ lies on the single ‘universal’ curve (within
scatters of one order of magnitude) for many ion-
conducting glasses means that σ is governed mainly by
Ea. Therefore, if we measure σ at some temperature,
we can estimate Ea from Equation 5, and we can have
a rough sketch of σ at different temperatures. Or, if Ea
is obtained by some experimental or theoretical tech-
nique, ionic conductivity can be calculated. Theoretical
estimation of Ea was done first by Anderson and Stuart
[23].
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11. J . S W E N S O N and L . B Ö R J E S S O N , Phys. Rev. Lett. 77 (1996)

3569.
12. J . P . M A L U G A N I and R. M E R C I E R , Solid St. Ion. 13 (1984)

293.
13. A . D O I , J. Non-Cryst. Solids 246 (1999) 155.
14. R . M E R C I E R, M. T A C H E Z, J . P . M A L U G A N I and C.

R O U S S E L O T , Mater. Chem. Phys. 23 (1989) 13.
15. S . A D A M S and J . M A I E R , Solid St. Ioni. 105 (1998)

67.
16. J . S W E N S O N, R. J . M cG R E E V Y , L . B Ö R J E S S O N and J .
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